

GENESYNTH: NOISE BAND-BASED GENETIC
ALGORITHM ANALYSIS/SYNTHESIS FRAMEWORK

Michael Chinen Naotoshi Osaka

Tokyo Denki University
School of Science and Technology for Future Life

2-2 Kanda-nishiki-cho, Chiyodaku, Tokyo, 101-8457, Japan
mchinen@gmail.com, osaka@im.dendai.ac.jp

ABSTRACT

Genesynth is an analysis/synthesis framework that uses
a genetic algorithm to search for a noise band sound
model. The framework is written as an open source
C++ tool, which allows for both the modification and
resynthesis of found sound models and also
genealogical exploration of the generations of sound
variations created as a side effect of the genetic
algorithm.

The genetic algorithm used is specialized for the
problem of audio analysis by using variable
chromosome length as well as hierarchical chromosome
structure. The algorithm’s fitness function compares
cached and compressed FFT data against estimated
noise band models represented in the chromosomes.

The noise band model is synthesized using sinusoids
that are stochastically modulated in frequency to
achieve a flexible bandwidth.

1. INTRODUCTION

Analysis/synthesis frameworks have been proven useful
as a method of sound manipulation, offering the benefits
of higher-level models to control sound. Frameworks
are often classified by their definition of sound models
and units of synthesis. Established examples include
sinusoidal models such as PARSHL[1] and the MQ
algorithm[2], and Hybrid examples such as SMS[3] and
ATS[4], and noise-band models such as Loris[5]. These
frameworks are often judged on their abilities to
reproduce a class of sounds accurately. While accuracy
is clearly an important feature, the authors also feel that
for those using the frameworks as a means of sound
manipulation, it would be valuable if the framework
also included a high-level means for said sound
manipulation. With this in mind, we have developed an
analysis/synthesis framework, using a genetic algorithm
(GA) as the means for manipulation and variation of
sound, and a noise-band method of synthesis.

A genetic algorithm is a type of search algorithm that
searches the problem space by using the concepts in
evolution theory such as fitness and selection. Search
algorithms usually have the property of creating a
smooth path from the starting point to the solution. In
most applications, the midpoints along the path are
simply discarded. However, when interested in the
variations for artistic purposes, these intermediary

solutions are interesting. In the case of
analysis/synthesis, the traversal of this path means a
series of sound variation, starting from noise, gradually
getting closer and closer to a sound model that fits the
input.

It should be noted that genetic algorithms have been
used in many musical and sound based applications[6].
Horner in particular has done related work on using
GAs in parameter estimation for wavetable synthesis[7].
However, perhaps because of the large search space of
digital audio, the current applications have either
restricted search spaces, or require human interaction to
aid the fitness function. Because none of these current
genetic algorithms fit the needs of a general-purpose
analysis engine, we have designed our own.

As this framework does not compute the model
directly from the FFT, but instead searches for a
solution starting from random noise, analysis is a time
intensive operation, during which incrementally better
results are found. Generally, the algorithm finds some
recognizable features of both noisy and pitched input
within a short period of time (seconds,) although an
identifiable sound can take much longer, and in many
cases a good but far from optimal solution may be the
end result. Because the purpose of the system is for
music and art, the user will be interested in the sound
variations created as a side effect by the GA, an thus an
imperfect solution may be more acceptable.

In this paper, we describe a hierarchical chromosome
structure as a sound model. We then provide a GA
specification that outlines the search component. Next,
the equations for synthesizing a chromosome are
specified. Automatic side-effect and manual variation
and sound manipulation for the purpose of music and art
are then discussed. Finally, we conclude with future
directions

2. GA ANALYSIS SPECIFICATION

2.1. Sound Model

The sound model of Genesynth was designed with two
values in mind. As a GA, the model must be efficient
with space and modular. It should also be flexible
enough to represent noisy, inharmonic, and harmonic
audio. In Genesynth, sound is described in a data
structure called a chromosome. The chromosome is

defined as a collection of smaller data components
described in table 1.

Table 1. Data members of Chromosome

Component Contents

Chromosome List of SoundCells

SoundCell NoiseBand, list of child
SoundCells, list of PlaceGenes

NoiseBand frequency, amplitude, bandwidth

PlaceGene Sample number, interpolation
coefficients for frequency,
amplitude, and bandwidth.

The chromosome structure takes several deviations

from that of a standard GA. Firstly, to save space and
speed up the GA, the chromosome is of no fixed length
– mutations can cause growth or pruning. Secondly,
Genesynth chromosomes have a hierarchical structure
with allele markings, for the purpose of modeling
hierarchical sound phenomenon such as harmonics. As
a result, this requires a non-standard crossover algorithm.

In the following subsections, the components of a
chromosome relevant to the sound model are described,
starting with the most contained (deepest) in the
hierarchy.

2.1.1. NoiseBand

NoiseBands are the form the basis of the sound model in
Genesynth, which can be likened to a unit generator or
synth. As a data object, a NoiseBand contains three
parameters: amplitude a, frequency f, and a bandwidth
ratio bw, (the ratio of bandwidth to frequency.) A
NoiseBand represents a band of spectral energy centered
around its frequency parameter, with power uniformly
distributed over it such that its integral will be equal to
the amplitude. A bandwidth of zero then represents a
pure sinusoid, and a bandwidth of 1.0 represents noise
energy from 0hz to 2f.

2.1.2. PlaceGene

The NoiseBand has no time information in any of its
data members. Thus, on its own, it represents a static,
non changing sound. Real sound is always changing;
Genesynth uses PlaceGenes to enable a NoiseBand to
change its power spectrum through time by acting as
nodes from which to hang coefficients for amplitude,
frequency and bandwidth at a certain sample.

2.1.3. SoundCell

A SoundCell contains a NoiseBand, a list of PlaceGenes,
and children SoundCells. Child SoundCells “inherit” the
PlaceGenes of its parent, if the parent’s PlaceGenes have
a flag set. This is intended to model relationships
between partials and noise energy bands such as the way
partials and noise in an instrument sound tend to increase
and decrease in amplitude together. Having this kind of

relationship defined also gives a higher level of control
for modifying the sound model later.

2.2. Search Method
The Chromosome structure determines how flexible the
sound model will be. The rest of the GA is concerned
with how to manipulate chromosomes to explore the
search space (mutation and crossover,) and how to
determine if our searching is progressing (fitness
function.)

The overall flow of Genesynth’s search method is no
different than any other GA:

Initialize a population of size p
Score the population.
Repeat until we have found an acceptable score:
 Repeat until the next population is of size p
 Randomly select two high-scoring chromosomes
 Mutate the chromosomes with probability m
 Crossover the chromosomes with probability c
 Add the chromosomes to the next population
 Score the next population

Use the next population as current

The implementation of the above pseudocode is broken
up into five smaller methods that are described below.

2.2.1. Initialization

Chromosomes are initialized as having one SoundCell
with a NoiseBand and a random number of PlaceGenes
with random parameters within sensible predefined
parameter limits.

2.2.2. Mutation

Genesynth chromosomes are defined as hierarchical data
objects, instead of the bit strings commonly found in
GAs. This requires a custom mutation (and crossover)
method. From the top of the hierarchy, (at the
Chromosome level,) each of its contained data objects
are mutated with a probability m. If a complex data
structure (SoundCell, PlaceGene, or NoiseBand) is
mutated, all of its contained objects are mutated,
resulting in a depth first traversal of the chromosome’s
components. When a number object is mutated, the
parameter value is raised or lowered by a random
percentage selected by an exponential distribution, and
clamped to keep it within the parameter’s predefined
limits.

The components are then mutated with the same
probability m to have its subcomponents deleted, or
moved up or down a level in the hierarchy in the case of
SoundCells.

The final step is the addition (with probability m,) of
newly initialized subcomponents, with a few exceptions.
Depending on a coinflip, a SoundCell will split its
NoiseBand up into smaller NoiseBands that occupy a
subset of the original NoiseBand spectrum by adding
children and modifying its own NoiseBand. This feature
helps speed the search along in a divide-and-conquer
methodology.

2.2.3. Crossover

The crossover method in Genesynth is perhaps the
most complicated. It uses a hierarchical crossover
similar to one described by Bently[5], which differs in
that it uses allele markers to indicate sections in the
chromosome that have a certain history and as such
SoundCells with identical markers probably have a
similar spectral representation. Crossover is done
uniformly, so a digital coin toss is performed to see if a
given allele should crossover. Two chromosomes that
both contain a SoundCell with the same allele marker
will always have its subcomponents crossover with each
other. Therefore, the SoundCells’ PlaceGenes and
NoiseBand will crossover with each other, but as the
child SoundCells, having alleles, they will try to find
their corresponding matches. In the case of a SoundCell
that does not have a matching allele, it is simply copied
to the chromosome that wins the coin toss.

While crossover is complicated at the complex-object
layer, it becomes very simple once it reaches the
parameter level, because it can then be treated as a
regular linear crossover. When crossing over a
parameter a, we generate the crossover from the current
partner values a1 and a2 by linearly interpolating a
random amount toward the partner’s value. This
technique can be looked at as the analog to bit swapping
uniform crossover for our floating-point parameters,
since randomly bit swapping two integer bits will
generate two numbers somewhere between the originals.

2.2.4. Selection

To form the next population of chromosomes, we rank
the chromosomes in the current population by score and
then assign to each chromosome a probability of
selection proportional to its ranking.

2.2.5. Fitness Function

The fitness function essentially determines which paths
the search should continue to explore. The goal is to
compare the input sound to the sound model stored in the
chromosome. Ideally, the fitness function should be
consistent and efficient. These ideals cannot be easily
achieved with the naïve method of scoring by comparing
the samples of the original to the synthesized – it is not
efficient, as synthesizing and comparing each sample
takes too long, and it is not consistent, as stochastically
synthesized noise bands would yield many different
waveforms, and thus scores for the same model.

With these considerations in mind, Genesynth’s
fitness function computes a score by comparing a
windowed spectrum estimate of the chromosome with a
cached and compressed bins from the STFT of the input.

Runs of STFT bins are converted into a bands if they
are long enough and are greater than a threshold
amplitude A. Within these bands, STFT bins are
quantized and grouped into wider bins. The result is
that we are able to represent wide bands of noise energy

with very few bins. This is a form of compression that
helps the GA speed up. This can be seen in fig. 1.

Figure 1. Compression of energy bands from FFT bins

 There is special case of not compressing bins

immediately after a big decibel leap for the purpose of
catching sinusoidal peaks, where we need the
neighboring bins to “triangulate” where the main lobe’s
center is.

 To compare the compressed spectrum to the
chromosome, we need a method of estimating the
windowed spectrum (including lobes) for a NoiseBand.
Then we can compute the score for a frame in a way that
resembles SNR:

Score = s /(1 + w) (1)

with

 s

input ofenergy total

satisfiedinput ofenergy
=

 w
input ofenergy total

usednot chromosome ofenergy
=

The scoring function rewards Chromosome

NoiseBands that overlap input bands. So long as the
NoiseBand lobe estimator is defined to be monotonically
decreasing as outside of the bandwidth area, the genetic
algorithm will use the lobe slope as feelers to slide and
fit into spectral hills. This effect can be seen in fig.2.

Figure 2. Comparison of Input and Chromosome

The spectral score is then just the average of all

frames for the chromosome in question. To encourage
efficiency, the chromosome score is finally penalized by
a small amount proportional to the number of
SoundCells it contains.

3. SYNTHESIS

The NoiseBand represents a band of energy specified by
amplitude, bandwidth, and frequency. To synthesize
this, we use a stochastically frequency modulated
sinusoid. For the kth NoiseBand we can compute the
nth sample is as:

sk(n) = A·cos(θ(n)) (2)

with

θ(0) = c; θ(n) =θ(n-1)+ 2πf(n)/SR

 f(0) = F; f(n) = f(n-1) + [ftarget(n)-f(n-1)]/[r(n)+1]

!
"
#

+

>
=

otherwise ·F) BW)(1.0·F, BW)-0random((1.

0)(if 1)-(n
 (n)

target

target

nrf
f

 r(0) = 0;

!
"
>$

=
otherwise SR/F) random(0,

0)1(if 1-1)-r(n
 (n)

nr
r

where SR is the sample rate, A, F, and BW are the
NoiseBand’s amplitude, frequency, and bandwidth
parameters, and random(x,y) is a uniformly random
value between x and y. This will yield a pure sinusoid if
BW is zero and toneless noise if BW equals one.

The entire chromosome waveform can then be
synthesized as

s(n) = Σsi(n) (3)

4. MUSICAL RESULTS

The main goal of this work is to provide a artistic and
musical approach to the analysis/synthesis problem.
The following sections describe typical usage of the
algorithm to generate creative content.

4.1. Search Variation Trend

Instead of using the much faster traditional method of
computing the solution directly, we use a GA to search
for it. Depending on the input, it can take minutes or
hours to find a good solution. The musical benefit of
using a search method lies in its automatically generated
intermediate solutions. Knowledge in the way these
sound models tend to form may provide the user some
insight. In the results described below, a generation size
of 20 chromosomes was used.

The search for any input tends to start with a whitish
noise band that quickly shrinks down to a band the
width of the spectral range and amplitude envelope of
the input within the first 10 to 50 generations. If the
input contains narrow bands or sinusoids, this main
chunk of noise is quickly broken up into narrow bands
that slowly tighten around the peaks. Finally, the frame
by frame amplitude differences are sought out.

For pitched sounds the algorithm creates variations
that bring in partials out of fuzz-like noise that allows
the partials to be out of tune without sounding so harsh.
For sounds composed of mostly fast changing noise,
such as thunder, dynamic wind-like sounds appear.

The convergence rates for different sounds vary
largely based on how dynamic the sounds are, as well as
their length. A 3 second bass example was synthesized
on Apple PowerBook G4 under 2dB of spectral
distortion in 30 minutes, yielding around 20,000
variations. A 7 second thunder sample may take four
times longer and still contain artefacts. However, it
takes just a few seconds to produce potentially useful
sound variations. The running time of the algorithm is
improving as development continues.

4.2. Family Tree

Each generation (population) created by Genesynth is
saved to a text file. After the analysis is over, the user
can create a family tree of a specified chromosome,
tracing either its best parent or worst parent back to the
first generation. The user can then use this list as an
instrument, by synthesizing different generations one at
a time, or several all together at once.

5. CONCLUSION

Genesynth is still under development. An OS X GUI is
in development and should help make Genesynth more
accessible. The project can be found under SourceForge
under the project name Genesynth at
www.sourceforge.net.

6. REFERENCES

[1] Smith JO, and Serra, X. 'PARSHL: A Program for
the Analysis/Synthesis of Inharmonic Sounds Based
on a Sinusoidal Representation'', Proceedings of the
International Computer Music Conference, 1987.

[2] McAulay, R. J., and T. F. Quatieri, “Speech
Analysis/Synthesis Based on a Sinusoidal
Representation,” IEEE Trans. Acoustics, Speech,
and Signal Processing, Vol. 34, No. 4, pp. 744–754,
1986.

[3] Serra, X. “Musical Sound Modeling with Sinusoids
plus Noise”. G. D. Poli and others (eds.), Musical
Signal Processing, Swets & Zeitlinger Publishers,
1997.

[4] Pampin, J. “ATS: a Lisp Environment for Spectral
Modeling” Proceedings of the International
Computer Music Conference, Beijing, 1999

[5] Fitz, K., Haken, L., Lefvert, S., and O’Donnel, M.
“Sound Morphing using Loris and the Reassigned
Bandwdith-Enhanced Additive Sound Model:
Practice and Applications”, Proceedings of the
International Computer Music Conference,
Gotenborg, Sweden, 2002

[6] Dahlstedt, P. “Sounds Unheard Of” Ph. D.
Dissertation, Chalmers University of Technology.
2004

[7] Horner, A., "Wavetable Matching Synthesis of
Dynamic Instruments with Genetic Algorithms,"
Journal of the Audio Engineering Society, 43(11),
916-931, 1995

