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ABSTRACT 

Genesynth is an analysis/synthesis framework that uses 
a genetic algorithm to search for a noise band sound 
model.  The framework is written as an open source 
C++ tool, which allows for both the modification and 
resynthesis of found sound models and also 
genealogical exploration of the generations of sound 
variations created as a side effect of the genetic 
algorithm. 

The genetic algorithm used is specialized for the 
problem of audio analysis by using variable 
chromosome length as well as hierarchical chromosome 
structure.  The algorithm’s fitness function compares 
cached and compressed FFT data against estimated 
noise band models represented in the chromosomes. 

The noise band model is synthesized using sinusoids 
that are stochastically modulated in frequency to 
achieve a flexible bandwidth. 

1. INTRODUCTION 

Analysis/synthesis frameworks have been proven useful 
as a method of sound manipulation, offering the benefits 
of higher-level models to control sound.  Frameworks 
are often classified by their definition of sound models 
and units of synthesis.  Established examples include 
sinusoidal models such as PARSHL[1] and the MQ 
algorithm[2], and Hybrid examples such as SMS[3] and 
ATS[4], and noise-band models such as Loris[5].  These 
frameworks are often judged on their abilities to 
reproduce a class of sounds accurately.  While accuracy 
is clearly an important feature, the authors also feel that 
for those using the frameworks as a means of sound 
manipulation, it would be valuable if the framework 
also included a high-level means for said sound 
manipulation.  With this in mind, we have developed an 
analysis/synthesis framework, using a genetic algorithm 
(GA) as the means for manipulation and variation of 
sound, and a noise-band method of synthesis.  

A genetic algorithm is a type of search algorithm that 
searches the problem space by using the concepts in 
evolution theory such as fitness and selection.  Search 
algorithms usually have the property of creating a 
smooth path from the starting point to the solution.  In 
most applications, the midpoints along the path are 
simply discarded.  However, when interested in the 
variations for artistic purposes, these intermediary 

solutions are interesting.  In the case of 
analysis/synthesis, the traversal of this path means a 
series of sound variation, starting from noise, gradually 
getting closer and closer to a sound model that fits the 
input. 

It should be noted that genetic algorithms have been 
used in many musical and sound based applications[6].  
Horner in particular has done related work on using 
GAs in parameter estimation for wavetable synthesis[7].  
However, perhaps because of the large search space of 
digital audio, the current applications have either 
restricted search spaces, or require human interaction to 
aid the fitness function.  Because none of these current 
genetic algorithms fit the needs of a general-purpose 
analysis engine, we have designed our own.  

As this framework does not compute the model 
directly from the FFT, but instead searches for a 
solution starting from random noise, analysis is a time 
intensive operation, during which incrementally better 
results are found.  Generally, the algorithm finds some 
recognizable features of both noisy and pitched input 
within a short period of time (seconds,) although an 
identifiable sound can take much longer, and in many 
cases a good but far from optimal solution may be the 
end result.  Because the purpose of the system is for 
music and art, the user will be interested in the sound 
variations created as a side effect by the GA, an thus an 
imperfect solution may be more acceptable. 

In this paper, we describe a hierarchical chromosome 
structure as a sound model.  We then provide a GA 
specification that outlines the search component.  Next, 
the equations for synthesizing a chromosome are 
specified.  Automatic side-effect and manual variation 
and sound manipulation for the purpose of music and art 
are then discussed.  Finally, we conclude with future 
directions 

2. GA ANALYSIS SPECIFICATION 

2.1. Sound Model  

The sound model of Genesynth was designed with two 
values in mind.  As a GA, the model must be efficient 
with space and modular.  It should also be flexible 
enough to represent noisy, inharmonic, and harmonic 
audio. In Genesynth, sound is described in a data 
structure called a chromosome.  The chromosome is 



  
 

 

defined as a collection of smaller data components 
described in table 1. 

Table 1. Data members of Chromosome 

Component Contents 

Chromosome List of SoundCells 

SoundCell NoiseBand, list of child 
SoundCells, list of PlaceGenes 

NoiseBand frequency, amplitude, bandwidth 

PlaceGene Sample number, interpolation 
coefficients for frequency, 
amplitude, and bandwidth.    

 
The chromosome structure takes several deviations 

from that of a standard GA.  Firstly, to save space and 
speed up the GA, the chromosome is of no fixed length 
– mutations can cause growth or pruning.  Secondly, 
Genesynth chromosomes have a hierarchical structure 
with allele markings, for the purpose of modeling 
hierarchical sound phenomenon such as harmonics.  As 
a result, this requires a non-standard crossover algorithm. 

In the following subsections, the components of a 
chromosome relevant to the sound model are described, 
starting with the most contained (deepest) in the 
hierarchy. 

2.1.1. NoiseBand 

NoiseBands are the form the basis of the sound model in 
Genesynth, which can be likened to a unit generator or 
synth.  As a data object, a NoiseBand contains three 
parameters: amplitude a, frequency f, and a bandwidth 
ratio bw, (the ratio of bandwidth to frequency.)  A 
NoiseBand represents a band of spectral energy centered 
around its frequency parameter, with power uniformly 
distributed over it such that its integral will be equal to 
the amplitude.  A bandwidth of zero then represents a 
pure sinusoid, and a bandwidth of 1.0 represents noise 
energy from 0hz to 2f. 
 
2.1.2. PlaceGene 

The NoiseBand has no time information in any of its 
data members.  Thus, on its own, it represents a static, 
non changing sound.  Real sound is always changing;   
Genesynth uses PlaceGenes to enable a NoiseBand to 
change its power spectrum through time by acting as 
nodes from which to hang coefficients for amplitude, 
frequency and bandwidth at a certain sample.  
 
2.1.3. SoundCell 

A SoundCell contains a NoiseBand, a list of PlaceGenes, 
and children SoundCells.  Child SoundCells “inherit” the 
PlaceGenes of its parent, if the parent’s PlaceGenes have 
a flag set.  This is intended to model relationships 
between partials and noise energy bands such as the way 
partials and noise in an instrument sound tend to increase 
and decrease in amplitude together.  Having this kind of 

relationship defined also gives a higher level of control 
for modifying the sound model later.  

2.2. Search Method 
The Chromosome structure determines how flexible the 
sound model will be.  The rest of the GA is concerned 
with how to manipulate chromosomes to explore the 
search space (mutation and crossover,) and how to 
determine if our searching is progressing (fitness 
function.) 
 
The overall flow of Genesynth’s search method is no 
different than any other GA: 
 
Initialize a population of size p 
Score the population. 
Repeat until we have found an acceptable score: 
    Repeat until the next population is of size p  
        Randomly select two high-scoring chromosomes 
        Mutate the chromosomes with probability m 
        Crossover the chromosomes with probability c 
        Add the chromosomes to the next population 
    Score the next population     

Use the next population as current 
    
The implementation of the above pseudocode is broken 
up into five smaller methods that are described below. 
 
2.2.1. Initialization 

Chromosomes are initialized as having one SoundCell 
with a NoiseBand and a random number of PlaceGenes 
with random parameters within sensible predefined 
parameter limits.     
 
2.2.2. Mutation 

Genesynth chromosomes are defined as hierarchical data 
objects, instead of the bit strings commonly found in 
GAs.  This requires a custom mutation (and crossover) 
method.  From the top of the hierarchy, (at the 
Chromosome level,) each of its contained data objects 
are mutated with a probability m.  If a complex data 
structure (SoundCell, PlaceGene, or NoiseBand) is 
mutated, all of its contained objects are mutated, 
resulting in a depth first traversal of the chromosome’s 
components.  When a number object is mutated, the 
parameter value is raised or lowered by a random 
percentage selected by an exponential distribution, and 
clamped to keep it within the parameter’s predefined 
limits. 

The components are then mutated with the same 
probability m to have its subcomponents deleted, or 
moved up or down a level in the hierarchy in the case of 
SoundCells.   

The final step is the addition (with probability m,) of 
newly initialized subcomponents, with a few exceptions.  
Depending on a coinflip, a SoundCell will split its 
NoiseBand up into smaller NoiseBands that occupy a 
subset of the original NoiseBand spectrum by adding 
children and modifying its own NoiseBand.  This feature 
helps speed the search along in a divide-and-conquer 
methodology. 



  
 

 

 
2.2.3. Crossover 

The crossover method in Genesynth is perhaps the 
most complicated.  It uses a hierarchical crossover 
similar to one described by Bently[5], which differs in 
that it uses allele markers to indicate sections in the 
chromosome that have a certain history and as such 
SoundCells with identical markers probably have a 
similar spectral representation.  Crossover is done 
uniformly, so a digital coin toss is performed to see if a 
given allele should crossover.  Two chromosomes that 
both contain a SoundCell with the same allele marker 
will always have its subcomponents crossover with each 
other.  Therefore, the SoundCells’ PlaceGenes and 
NoiseBand will crossover with each other, but as the 
child SoundCells, having alleles, they will try to find 
their corresponding matches.  In the case of a SoundCell 
that does not have a matching allele, it is simply copied 
to the chromosome that wins the coin toss.    

While crossover is complicated at the complex-object 
layer, it becomes very simple once it reaches the 
parameter level, because it can then be treated as a 
regular linear crossover.  When crossing over a 
parameter a, we generate the crossover from the current 
partner values a1 and a2 by linearly interpolating a 
random amount toward the partner’s value. This 
technique can be looked at as the analog to bit swapping 
uniform crossover for our floating-point parameters, 
since randomly bit swapping two integer bits will 
generate two numbers somewhere between the originals.     

2.2.4. Selection 

To form the next population of chromosomes, we rank 
the chromosomes in the current population by score and 
then assign to each chromosome a probability of 
selection  proportional to its ranking. 

2.2.5. Fitness Function 

The fitness function essentially determines which paths 
the search should continue to explore.  The goal is to 
compare the input sound to the sound model stored in the 
chromosome.  Ideally, the fitness function should be 
consistent and efficient.  These ideals cannot be easily 
achieved with the naïve method of scoring by comparing 
the samples of the original to the synthesized – it is not 
efficient, as synthesizing and comparing each sample 
takes too long, and it is not consistent, as stochastically 
synthesized noise bands would yield many different 
waveforms, and thus scores for the same model. 

With these considerations in mind, Genesynth’s 
fitness function computes a score by comparing a 
windowed spectrum estimate of the chromosome with a 
cached and compressed bins from the STFT of the input.   

Runs of STFT bins are converted into a bands if they 
are long enough and are greater than a threshold 
amplitude A.  Within these bands, STFT bins are 
quantized and grouped into wider  bins.  The result is 
that we are able to represent wide bands of noise energy 

with very few bins.  This is a form of compression that 
helps the GA speed up.  This can be seen in fig. 1. 

 

 
Figure 1. Compression of energy bands from FFT bins   
 
  There is special case of not compressing bins 

immediately after a big decibel leap for the purpose of 
catching sinusoidal peaks, where we need the 
neighboring bins to “triangulate” where the main lobe’s 
center is. 

  To compare the compressed spectrum to the 
chromosome, we need a method of estimating the 
windowed spectrum (including lobes) for a NoiseBand.  
Then we can compute the score for a frame in a way that 
resembles SNR: 

 
Score = s /(1 + w)                           (1) 

with                  
     

  
  s 

input ofenergy  total

satisfiedinput  ofenergy 
=              

  
 

  w 
input ofenergy  total

usednot  chromosome ofenergy 
=         

            
The scoring function rewards Chromosome 

NoiseBands that overlap input bands.  So long as the 
NoiseBand lobe estimator is defined to be monotonically 
decreasing as outside of the bandwidth area, the genetic 
algorithm will use the lobe slope as feelers to slide and 
fit into spectral hills.  This effect can be seen in fig.2. 

 

 
Figure 2. Comparison of Input and Chromosome 
 
The spectral score is then just the average of all 

frames for the chromosome in question.  To encourage 
efficiency, the chromosome score is finally penalized by 
a small amount proportional to the number of 
SoundCells it contains.   



  
 

 

3. SYNTHESIS 

The NoiseBand represents a band of energy specified by 
amplitude, bandwidth, and frequency.  To synthesize 
this, we use a stochastically frequency modulated 
sinusoid.  For the kth NoiseBand we can compute the 
nth sample is as: 

sk(n) = A·cos(θ(n) )                          (2) 

with 

θ(0) = c;   θ(n) =θ(n-1)+ 2πf(n)/SR                            

 f(0) = F;     f(n) = f(n-1) + [ftarget(n)-f(n-1)]/[r(n)+1]          
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where SR is the sample rate, A, F, and BW are the 
NoiseBand’s amplitude, frequency, and bandwidth 
parameters, and random(x,y) is a uniformly random 
value between x and y.  This will yield a pure sinusoid if 
BW is zero and toneless noise if BW equals one. 

The entire chromosome waveform can then be 
synthesized as 

s(n) = Σsi(n)                               (3) 

4. MUSICAL RESULTS  

The main goal of this work is to provide a artistic and 
musical approach to the analysis/synthesis problem.  
The following sections describe typical usage of the 
algorithm to generate creative content. 

4.1. Search Variation Trend 

Instead of using the much faster traditional method of 
computing the solution directly, we use a GA to search 
for it.  Depending on the input, it can take minutes or 
hours to find a good solution.  The musical benefit of 
using a search method lies in its automatically generated 
intermediate solutions.  Knowledge in the way these 
sound models tend to form may provide the user some 
insight.  In the results described below, a generation size 
of 20 chromosomes was used. 

The search for any input tends to start with a whitish 
noise band that quickly shrinks down to a band the 
width of the spectral range and amplitude envelope of 
the input within the first 10 to 50 generations.  If the 
input contains narrow bands or sinusoids, this main 
chunk of noise is quickly broken up into narrow bands 
that slowly tighten around the peaks.  Finally, the frame 
by frame amplitude differences are sought out. 

For pitched sounds the algorithm creates variations 
that bring in partials out of fuzz-like noise that allows 
the partials to be out of tune without sounding so harsh.   
For sounds composed of mostly fast changing noise, 
such as thunder, dynamic wind-like sounds  appear.   

The convergence rates for different sounds vary 
largely based on how dynamic the sounds are, as well as 
their length.  A 3 second bass example was synthesized 
on Apple PowerBook G4 under 2dB of spectral 
distortion in 30 minutes, yielding around 20,000 
variations.  A 7 second thunder sample may take four 
times longer and still contain artefacts.  However, it 
takes just a few seconds to produce potentially useful 
sound variations.  The running time of the algorithm is 
improving as development continues. 

4.2. Family Tree 

Each generation (population) created by Genesynth is 
saved to a text file.  After the analysis is over, the user 
can create a family tree of a specified chromosome, 
tracing either its best parent or worst parent back to the 
first generation.  The user can then use this list as an 
instrument, by synthesizing different generations one at 
a time, or several all together at once.  

5. CONCLUSION 

Genesynth is still under development.  An OS X GUI is 
in development and should help make Genesynth more 
accessible.  The project can be found under SourceForge 
under the project name Genesynth at 
www.sourceforge.net. 
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